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Abstract A stochastic background of primordial gravitational waves may substantially 

contribute, via the Sachs-Wolfe effect, to the large-scale Cosmic Microwave Background 

(CMB) anisotropies recently detected by COBE. This implies a Qia~ in any resulting deter- 

mination of the primordial amplitude of density fluctuations. We consider the constraints 

imposed on n < 1 (“tilted”) power-law fluctuation spectra, taking into account the con- 

tribution kom both scalar and tensor waves, as predicted by power-law inflation. The 

gravitational-wave contribution to CMB anisotropies generally reduces the required P~J 

level of mass fluctuation, thereby increasing the linear bias parumeter, even in models where 

the spectral index is close to the Harrison-Zel’dovich value n = 1. This “gravitational- 

wave bias” helps to reconcile the predictions of CDM models with observations on pairwise 

galaxy velocity dispersion on small scales. 
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The recent detection of large angular scale CMB anisotropies by the COBE satellite 

(Smoot et ul. 1992) opens a window to the understanding of the physics of the early uni- 

verse: in particular, it provides strong constraints on models for the origin of primordial 

perturbations. Inflation is probably the simplest and most motivated of such models: per- 

turbations are generated in a causal way by zero-point quantum fluctuations which are then 

magnified by the accelerated universe expansion to cosmologically observable scales. The 

determination of the rm~ fluctuation amplitude consistent with the COBE measurements 

in the frame of various galaxy formation scenarios (e.g. Wright et al. 1992; Efstathiou, 

Bond & White, 1992; Schaefer & Shafi 1992) h as h owever shown that a quite high fluctu- 

ation level is required, which, in the standard Cold Dark Matter (CDM) scenario causes 

excessive small-scale power. In fact, a relevant quantity for all galaxy formation scenarios 

is the linear bias parameter, defined as the inverse of the rms linear mass fluctuation on a 

sphere of 8 h -l Mpc (h is the Hubble constant in units of 100 km set-r Mpc-‘; we take 

h = 0.5): the COBE results imply b x 0.8, for the scale-invariant (n = 1) CDM case. Low 

bias (i.e. more evolved) CDM models lead to better agreement with observations on large- 

scale flows (e.g. Bertschinger et al. 1990), but imply an excess of velocity dispersion on 

small scales when compared to observations on pairwise galaxy velocity dispersion in the 

CfA redshift survey (Davis & Peebles 1983). Al so, the slope of the galaxy two-point func- 

tion, determined in numerical simulations, becomes too steep. Both of these drawbacks 

can be alleviated by resorting to a velocity bias (e.g. Couchman & Carlberg 1992). 

The above determination of b is however only valid if the large angular scale tem- 

perature anisotropies, detected by COBE, are totally due to density perturbations (scalar 

modes), which perturb the last-scattering surface via the Sachs-Wolfe effect (Sachs & 

Wolfe 1967). H owever, a stochastic background of primordial gravitational waves (tensor 

modes) originated during inflation also contributes to this effect. A rough estimate of 

the anisotropies originated by scalar perturbations is ($!)s - i.HS(p/+, where cp is the 

inflaton field, 6~ its fluctuation and H the Hubble constant during inflation; these quan- 
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tities have to be evaluated at the time when the scales relevant to the large-scale CMB 

fluctuations crossed the Hubble-radius, i.e. about 60 e-foldings before the end of the in- 

flationary expansion. The anisotropy originated by tensor perturbations is (F)T m zap, 

with n E m. Th us, we can easily obtain an approximate measure of their relative 

contribution by (~)s/(?)T w iH/nr+l~~. During inflation H2 = $(V((p) + iG2), 

where V(v) is the effective inflaton potential. In many models, such as chaotic (Linde 

1983) or new inflation (Linde 1982; Albrecht & Steinhardt 1982), a slow-rollover approx- 

imation holds, d2 << V(v) x 3H2/rc2; in these cases the contribution of tensor modes to 

6T/T is much smaller than that due to scalar ones. However, in other models, such as 

power-law inflation (Abbott & Wise 1984a; Lucchin & Matarrese 1985), a slow-rollover 

approximation is not necessarily required and one can have d2 w V(v). More in general, 

the minimal requirement on the inflaton dynamics is that it should lead to accelerated 

universe expansion, which implies F2/V((p) E E < 1 and ($$)s/(?)T +/m>*. 

It should be pointed out, however, that the possibility to ascribe most of the &T/T signal 

to gravitational waves (Krauss & White 1992) is restricted to models where the fluctuation 

spectrum is non-scale-invariant. 

To be more specific, let us consider the power-law inflation case, which has the 

advantage of being fully analytically tractable. In this case the universe expansion factor 

reads u(t) = a,[1 + (&/p>(t - tJP - tp (where a, and H, refer to an arbitrary time 

t, during inflation), with p > 1, and the inflaton field is assumed to have an exponential 

potential (Lucchin & Matarrese 1985), V(v) a exp(-AKp), with 0 < X = m < 4. 

Such an exponential potential also describes the dynamics of extended inflation models (e.g. 

La & Steinhardt 1989; Kolb, Salopek & Turner 1990). Moreover, for any inflation model 

where one scalar field rolls down a smooth potential, the evolution during the small range 

of e-foldings relevant for large-scale CMB anisotropies can be approximated by a power- 

law; thus, our results have a quite general validity. In such a case, the resulting power- 

spectrum of density perturbations at Hubble-radius crossing is proportional to IczQ-‘, 
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with a = l/(1 - p) < 0. A stochastic background of gravitational waves is also produced, 

with the same spectral behaviour at Hubble-radius crossing. In what follows we shall 

parametrize both of these spectra by the index n z 2a + 1 = (p - 3)/(p - 1) < 1, which 

for scalar modes (but not for tensor ones!) gives the spectral slope on constant time 

hypersurfaces before recombination, i.e. the so-called primordial spectral index. Note 

that, the limit p + 00, corresponding to the de Sitter case, gives a + 0, or n + 1, i.e. the 

Harrison-Zel’dovich fluctuation spectrum. For a general value of p (or n) one can obtain 

the estimate ( !$)s/(~)T N i J 
2(3--n) I--n = 9; thus, for values of n not too far from 

unity, as required by the COBE results, we conclude that gravitational waves may make a 

significant contribution to large angular scale CMB anisotropies. 

Let us now provide a more detailed analysis of the problem. We can perform 

the usual expansion of temperature fluctuations in spherical harmonics %(0,4) = 

c t,m wd’irn(~, 41, w h ere the multipole coefficients take independent contributions from 

both scalar and tensor modes: al,,., = US,~,,, + UT&,. Note that, even though we wrote 

both the scalar and tensor modes as being proportional to the same field fluctuation 69, 

they actually refer to independent quantum field fluctuations, namely the inflaton and one 

polarization state of the graviton, which simply have the same rmJ value. The squared 

multipole amplitudes at E c, Iufm12 have expectation values (~2) = (u~)s + (a:)~, com- 

ing from both scalar and tensor perturbations. In the simplest case that both the inflaton 

and the graviton fluctuations have random phases, the multipoles al are Rayleigh dis- 

tributed in 2L + 1 “dimensions” (Abbott & Wise 1984b; Fabbri, Lucchin & Matarrese 

1987), with cosmic variance ,/-(a;). Th e result for the scalar case is, in a flat 

universe, (u:)s = w &= $A+(Ic)ji(2Jz/Hs) (e.g. Bond & Efstathiou 1987), where 

b(k) z &J’.+(k) is the power per logarithmic wavenumber of the peculiar gravitational 

potential !I! and P+(k) ‘t p 1 s ower-spectrum. In the power-law inflation case this relation 

can be analytically integrated (e.g. Fabbri, Lucchin & Matarrese 1987; Lyth & Stewart 
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1992) to give 

+-l 
(4,s 

(2~)~ 3 - n 
= %=G(2!+ 1) 

C(n)lT(3 - n)r(l + (n - 1)/2) 
22-“Iy2 - n/2)lT(l- (n - 5)/2) ’ (1) 

where the factor C(n) - a,2,,i+1az ( 2~~~)3-nI’2(2 - n/2) is related to the power-spectrum 

of the inflaton by PV( k) = brC(n)k”-’ . The constants a, and H, could be easily related to 

physical observables by matching the inflationary kinematics to the subsequent radiation 

and matter dominated eras. For the gravitational-wave contribution the result is (e.g. 

Abbott & Wise 1984a; Fabbri, Lucchin & Matarrese 1986) 

(C$)T = 144 7r5G(2t + 1) ii” ;;; ( F)n-lC,n) lW dkkn-21;(k), (2) 

where 

J 
k 

If(k) E dyJf+l/2(k - Y> J5i2b) 

km lea (k - y)5/2 y3/2 ’ 

and 7]E and 7s are the conformal time at the recombination and at the present epoch. In 

this case, the integration must be numerically performed. However, in the range of values 

of n of interest for us, there is a nice property of tensor multipoles (e.g. Fabbri, Lucchin 

& Matarrese 1987) which makes it possible to relate them to the scalar ones in a simple 

manner. By numerically integrating (Ui)T in Eq.(2) one can show that the ratio Df(n) z 

(a:)~/(=& for e > 2, is independent of e to a very good approximation, Df(n) x D(n). 

From the plots of Figure 1 this can be seen to hold in the spectral range 0.5 s n < 1, with 

better than 10% accuracy. Figure 1 also shows that, for n 2 0.8, gravitational waves give 

the main contribution to the multipoles, while density perturbations dominate for larger 

n values. The ratio of the tensor to the scalar contribution to the quadrupole is larger 

than that due to the higher order multipoles. In the high 4 limit (4 >> 1) it is also possible 

to obtain an approximate asymptotic form for the tensor multipoles, along the lines of 

the computation by Starobinskii (1985) for n = 1. Using Eq.(12) of Starobinskii as an 

approximation for I:(k) we obtain 

<ah m 288~~C(n)P(n) (%) n-1 (( + ;) n-2, (3) 
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with 

-&(1-x2)- 
( 

2 x2 
+8(1-z2)y 

I 
, (4) 

which shows the same asymptotic dependence on e as the scalar multipoles. The numerical 

value of the ratio of the tensor to the scalar components is 5% larger than those plotted 

in Figure 1 for .! = 30, for values of n > 0.5, and 10% larger, for values of n between 

0.5 and 0. We can then write any e > 2 multipole in terms of the scalar contribution 

only, (a;) = (a:)~(1 + D(n)). Thi s makes it easier to obtain the bounds imposed by the 

COBE determination of the angular correlation function C(0) of temperature fluctuations 

to the complete scahr + tensor case. After dipole and quadrupole subtraction, one has 

C(6) = (l+o(n)) ~I,2(AT~)sW2(L)P~(cos e), where (AT’)s = (T,2/47r)($)s, with TO = 

2.735 f 0.006 K the mean temperature of the CMB radiation (Mather et al. 1990) and 

W(i) = exp[-(1/2)(a(e+1)/17.8a)l the appropriate filter function for the DMR experiment 

(Smoot et al. 1992). Th us considering also the gravitational-wave contribution does not 

affect the best-fit on the primordial spectral index n = 1.15+::$ (Smoot et al. 1992, 

Wright et al. 1992). This corresponds to a limit on the scale factor expansion power p > 5 

and on the scalar field potential coupling constant A < m. It affects, instead, the best- 

fit on the amplitude, since the total rmbquadrupole-normalized amplitude Qrm,-ps = 

16.3 f 4.6 /.LK can now be written as 

Q me-~s = (Qrm-P&J-. (5) 

The normalization of primordial density fluctuations required to fit the COBE data 

gets modified by the same factor. In particular one gets b(n) = bo(n)dm, where 

bo represents the same quantity calculated disregarding the gravitational-wave contribu- 

tion to CMB fluctuations. Figure 2 shows the ratio b/b0 as a function of n; notice that 

this “gravitational-wave bias” is independent of the galaxy formation scenario, i.e. of 

the transfer function. A very good fit is b/b0 x 14-12n 3--n. The value of ho(n) in the 
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frame of the CDM scenario, taking into account the (best-fitted) amplitude and the 

errors given by the COBE results on C(e), can be easily derived by properly scaling 

the fits by Vittorio, Matarrese & Lucchin (1988) [their Eqs.(23) and (24)]: one obtains 

h(n) 2 0.75 x 101*2ss+- “I(1 f 0.28). From the COBE detection of the 10” anisotropy, 

QSky(lOO) = 30 f 5 pK, we similarly get ho(n) x 0.82 x 101*285(1-n)(l f 0.17), in good 

agreement with Adams et al. (1992). By taking the weighted (by inverse variance) average 

of the two determinations and considering the gravitational-wave correction we finally get 

b(n) M 0.80 
J - 

lie ~n101*2'"('-")(1 1kO.15). 

As it is clear from Figure 1, gravitational waves give an even larger contribution to the 

COBE quadrupole detection, Qnn, = 13 f 6 PK. In such a case we obtain (a~)~/(a~)s x 

F and, with the CDM transfer function, b(n) RS 0.94JF 10’~285(‘-n)(1 f 0.46), 

which, because of the higher cosmic variance, is affected by quite a large error bar. 

Let us consider some examples. From Eq.(6), by taking n = 0.8, we get b z 2.1; 

even a value of the spectral index quite close to the Harrison-Zel’dovich one, such as 

n = 0.9, involves a remarkable correction by gravitational waves (x 23%), leading to the 

final estimate b x 1.3. 

Let us also notice that, given the inflationary model, the COBE data also provide a 

delerminution of the value of the Hubble constant at the time when the largest observable 

scale left the horizon, i.e. about 60 e-foldings before the end of inflation. For instance, for 

a power-law inflation with p = 11 (n = 0.8), Ha0 N 1.48 x lo-"mp(l zk 0.28), with mp 

the Planck mass. 

An important result of the present analysis is then the possibility to increase the 

estimate of the bias level: this implies less evolution of the considered cosmological models, 

thus lowering the amplitude of pairwise velocities on small scales. The tilted (n < 1) CDM 

models considered here provide a natural solution to the lack of power on large scales and 

excess power on small scales of a CDM model with n = 1 and b x 1. These non-standard 
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CDM models have been analyzed by many authors. Vittorio, Matarrese & Lucchin (1988) 

showed that they imply better agreement with large-scale drifts and with the cluster- 

cluster correlation function. Tormen, Lucchin & Matarrese (1992; see also Tormen et al. 

1992) explored in wider detail the advantage8 of these models in reproducing the large- 

scale peculiar velocity field traced by optically selected galaxy samples. A good fit of the 

angular correlation function of galaxies in the APM catalog is obtained by Liddle, Lyth & 

Sutherland (1992), with a n z 0.5 CDM model. More recently, Adams et al. (1992) have 

considered various cosmological constraints, while Cen et al. (1992) have run numerical 

simulations of n = 0.7 CDM models; however, they fix the normalization by fitting the 

COBE data without the tensor-wave contribution. This fact implies an overestimate of 

the small-scale power leading to a residual excess of pairwise velocity dispersion. The 

increase of the COBE determined biasing factor, resulting from our analysis, gives then 

an even stronger support to tilted CDM models. 

While completing this Letter two preprints have circulated that report on independent 

work on similar problems in the frame of various inflationary models (Salopek 1992; Davis 

et OZ. 1992). By a best-fit of the correlation function, Salopek derives the lower bound 

p i2 11 (n 2 0.8) in order to get an acceptable biasing factor. The Davis et al. analysis 

is instead based only on the quadrupole amplitude. Our conclusions are fully consistent 

with their results. 

Acknowledgments We want to thank E. Roulet for his kind help with the numerical 

computations. This work was partially supported by Italian MURST, by Fondazione 

Angelo della Riccia and by DOE and NASA (Grant NAGW-2381) at Fermilab. 



References 

Abbott, L.F. & Wise, M.B. 1984a, Nucl. Phys., B244, 541. 

Abbott, L.F. & Wise, M.B. 1984b, ApJ, 282, L47. 

Adams, F.C., Bond, J.R., Freese, K., Frieman J.A. & Olinto, A.V. 1992, CITA preprint. 

Albrecht, A. & Steinhardt, P.J. 1982, Phys. Rev. Lett., 48, 1220. 

Bertschinger, E., Dekel, A., Faber, S.M., Dressler, A. & Burstein, D. 1990, ApJ, 364, 370. 

Bond, J.R. & Efstathiou, G. 1987, MNRAS, 226, 655. 

Cen, R., Gnedin, N.Y., Kofman, L.A. & Ostriker, J.P. 1992, Princeton preprint. 

Couchman, H.M.P. & Carlberg, R.G. 1992, ApJ, 389,453. 

Davis, R.L., Hodges, H.M., Smoot, G.F., Steinhardt, P.J. & Turner, MS. 1992, preprint 

Fermilab-Pub-92/168-A. 

Davis, M. & Peebles, P.J.E. 1983, ApJ, 267, 465. 

Efstathiou, G., Bond, J.R. & White, S.D.M. 1992, preprint. 

Fabbri, R., Lucchin, F. & Matarrese, S. 1986, Phys. Lett., B166, 49. 

Fabbri, R., Lucchin, F. & Matarrese, S. 1987, ApJ, 315, 1. 

Kolb, E.W., Salopek, D.S. & Turner, M.S. 1990, Phys. Rev. D, 42, 3925. 

Krauss, L. & White, M. 1992, Yale preprint YCTP-P15-92. 

La, D. & Steinhardt, P.J. 1989, Phys. Rev. Lett., 62, 1316. 

Liddle, A.R., Lyth, D.H. & Sutherland, W. 1992, Phys. Lett., B279, 244 

Linde, A.D. 1982, Phys. Lett., B108, 389. 

Linde, A.D. 1983, Phys. Lett., B129, 177. 

Lucchin, F. & Matarrese, S. 1985, Phys. Rev. D, 32, 1316. 

Lyth, D.H. & Stewart, E.D. 1992, Phys. Lett., B274, 168. 

Mather, J.C. et aZ. 1990, ApJ, 354, L37. 

Sachs, R.K. & Wolfe, A.M. 1967, ApJ, 147, 73. 

Salopek, D.S. 1992, DAMTP preprint. 

Schaefer, R.K. & Shafi, Q. 1992, preprint BA-92-28. 

9 



Smoot, G.F. et al. 1992, ApJL, in press. 

Starobinskii, A.A., 1985, Sov. Astr. Lett., 11, 133. 

Tormen, G., Lucchin, F. & Matarrese, S. 1992, ApJ, 386, 1. 

Tormen, G., Moscardini, L., Lucchin, F. & Matarrese, S. 1992, in preparation. 

Vittorio, N., Matarrese, S. & Lucchin, F. 1988, ApJ, 328, 69. 

Wright, E.L. et al. 1992, ApJL, in press. 

Figure captions 

Figure 1 The ratio of the tensor to the scalar contribution to the CMB multipoles, up to 

order 4Y = 30, as a function of the primordial spectral index n. 

Figure 2 The gravitational-wave correction to the linear bias, b(n)/bo(n) = dm, 

as a function of the primordial spectral index n. 
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